Stem Cell Research Basics: Introduction
Stem cells in the human body have a unique ability to renew themselves and give rise to the more specialized cell types that do the work of the body. Stem cells remain unspecialized until a signal from the body tells them to develop into specific cells of the body like a heart, nerve, or skin cell.
For years, researchers have been studying the unique characteristics of stem cells. The first stem cells studied by researchers were derived from adult tissues and, more recently, scientific breakthroughs have enabled research on stem cells that are removed from one of the earliest human cellular formations, the blastocyst.
What is a stem cell?
All stem cells, no matter their source, are unspecialized cells that give rise to more specialized cells. Stem cells can become one of more than 200 specialized cells in the body. They serve as the body's repair system by renewing themselves and replenishing more specialized cells in the body.
How many types of stem cells are there?
The easiest way to categorize stem cells is by dividing them into two types: mature and early. Mature stem cells are found in specific mature body tissues as well as the umbilical cord and placenta after birth. Early stem cells, often called embryonic stem cells, are found in the inner cell mass of a blastocyst after approximately five days of development. See the below tables for more details on the characteristics of mature and early stem cells.
What are the unique properties of all stem cells?
Stem cells differ from other kinds of cells in the body. All stem cells—regardless of their source—have three general properties: they are capable of dividing and renewing themselves for long periods; they are unspecialized; and they can give rise to specialized cell types.
Stem cells are capable of dividing and renewing themselves for long periods. Unlike muscle cells, blood cells, or nerve cells—which do not normally replicate themselves—stem cells may replicate many times, or proliferate. A starting population of stem cells that proliferates for many months in the laboratory can yield millions of cells. If the resulting cells continue to be unspecialized, like the parent stem cells, the cells are said to be capable of long-term self-renewal.
What are the similarities and differences between embryonic and adult stem cells?
Human embryonic and adult stem cells each have advantages and disadvantages regarding potential use for cell-based regenerative therapies. One major difference between adult and embryonic stem cells is their different abilities in the number and type of differentiated cell types they can become. Embryonic stem cells can become all cell types of the body because they are pluripotent. Adult stem cells are thought to be limited to differentiating into different cell types of their tissue of origin.
Embryonic stem cells can be grown relatively easily in culture. Adult stem cells are rare in mature tissues, so isolating these cells from an adult tissue is challenging, and methods to expand their numbers in cell culture have not yet been worked out. This is an important distinction, as large numbers of cells are needed for stem cell replacement therapies.
Scientists believe that tissues derived from embryonic and adult stem cells may differ in the likelihood of being rejected after transplantation. We don't yet know whether tissues derived from embryonic stem cells would cause transplant rejection, since the first phase 1 clinical trial testing the safety of cells derived from hESCS has only recently been approved by the United States Food and Drug Administration (FDA).
Adult stem cells, and tissues derived from them, are currently believed less likely to initiate rejection after transplantation. This is because a patient's own cells could be expanded in culture, coaxed into assuming a specific cell type (differentiation), and then reintroduced into the patient. The use of adult stem cells and tissues derived from the patient's own adult stem cells would mean that the cells are less likely to be rejected by the immune system. This represents a significant advantage, as immune rejection can be circumvented only by continuous administration of immunosuppressive drugs, and the drugs themselves may cause deleterious side effects
Advertisements
No comments:
Post a Comment